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J. Phys.: Condens. Matter 1 (1989) 3765-3787. Printed in the UK 

Elastic dipole theory of CsCuC1, and related hexagonal 
Jahn-Teller compounds for neutron scattering 

U Schotte, H A Graf and H Dachs 
Hahn-Meitner-Institut, Glienicker Strasse 100, D-1000 Berlin 39, Federal Republic of 
Germany 

Received 27 June 1988, in final form 22 September 1988 

Abstract. Yamada’s proposal of treating as ‘dense Huang scattering’ the diffuse quasi-elastic 
intensities found in systems with distortive centres (=elastic dipoles) in each lattice cell is 
extended to a group of hexagonal cooperative Jahn-Teller compounds, with new exper- 
imental results available for one of them, CsCuCI3. This proposal is put on firm ground by 
identifying ‘dense Huang scattering’ as the central component of the q- and w-dependent 
neutron scattering cross section, which is calculated for the elastic dipoles in their elastic 
medium in terms of the three acoustic modes coupled to relaxing pseudo-spins. Phonon 
softening and the sign and size of strain-induced dipole interactions for possible ground- 
state structures are calculated. 

1. Introduction 

This paper continues an alternative description of the cooperative Jahn-Teller (JT) effect 
in hexagonal compounds ABC13 with A = Rb, Cs and B = Cu, Cr which are insulators 
and show one or two structural phase transitions from a common high-temperature (HT), 
high-symmetryphase P63/mmc (figure 1). Of the extensive literature we point out recent 
work with review character and as a source for earlier work (Crama 1980, Crama and 
Maaskant 1983, Tanaka et a1 1986a, b). 

Recent quasi-elastic diffuse neutron scattering results for the HT phase of CsCuC13 
(Graf et a1 1986) revealed patterns typical for Huang scattering of impurities in an elastic 
medium. This led to the concept of an array of randomly oriented elastic dipoles localised 
at the Cu2+ or Cr2+ sites where the Jahn-Teller effect causes stretching or compression 
of the octahedral C1- cages around the Jahn-Teller ions, an idea introduced earlier by 
Yamada and co-workers (Mori et a1 1980). 

In contrast to Huang scattering from impurities-like interstitials or vacancies pro- 
duced by irradiation-the distortions here are small compared to the lattice constants 
but the product of distortion times concentration is sizable. This explains why the q- 
range of validity of the Huang approach extends far in the Brillouin zone, and why the 
scattering disappears at T,-or, rather, becomes unmeasurably small, although a few 
‘misfits’ or domain boundaries should still be present at T < T,. Also there are no 
problems with using the elastic constants as available. At T, the elastic dipoles get 
ordered such that they tend to be parallel in the hexagonal plane and antiferrodistortively 
arranged along the c axis; for the Rb compounds there exist intermediate ‘P-phases’. 
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Pb cn 
C2 Orthorhombic P6,/mmc 

CsCuC1, i Hexagonal P6,22 or P6522 1 P6,/mmc ~ 

LTP 423 K HTP 

CsCrCI, ~ Monoclinic C2 1 P6,/mmc Hexagonal I 
y-Phase 170 K @-Phase 

RbCrCI, 1 C2 I Monoclinic C2,” 1 ’ P6,/mmc I 
y-Phase 200 K P-Phase 470 K @-Phase 

y-Phase 260 K P-Phase 339 K a-Phase 

Figure 1.  Structure and phase transition temperatures of the hexagonal JT compounds 
under investigation. 

At low temperatures one finds stretched octahedra, and ‘antiferrodistortive’ means 
that the long axes never meet at the same anion. Since each octahedron has three axes 
which can stretch, one can map it on a three-state Potts spin (Schroder and Thomas 
1976, Hock et a1 1978) and several low-temperature structures are possible and indeed 
found. Rather unique is CsCuCl, in that the stretched axes are arranged in helices wound 
around the c axis (figures 2 and 3). 

Most experiments have been performed on CsCuC1,-the only compound where 
large single crystals of ‘neutron quality’ can be drawn from solution and the only 

Figure 2. Parent structure (CsNiC1,) of the hexagonal JT compounds. 
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Figure 3. Structural details of CsCuC1, at room temperature: CuC4 chain determined by 
x-ray crystallography (space group P6J2). 

one where room-temperature ultrasound results for the elastic constants are available 
(Soboleva et a1 1976) and where temperature-dependent measurements of c44 show 
strong softening above T, (Luthi 1977). Therefore we test the theory on the results for 

In an earlier paper the above concept was elaborated and Huang scattering patterns 
calculated within a static picture of elastic dipole arrangements (Schotte 1987). To 
account for inelastic experiments and softening of acoustic waves, i.e. effects with q = 
0, the elastic approach can again be adopted, but must now include some dynamics; the 
experimental results point to a relaxation rather than to a resonance process. The theory 
will be developed such that the pseudo-spin relaxation rate is a fitting parameter, since 
this approach cannot describe the probably thermally activated hopping over a barrier 
of about 400 cm-' separating the stretched octahedron states ('warping energy' of single 
JT complex). 

The theory results in a more sophisticated treatment of 'dense Huang scattering', its 
temperature dependence and that of elastic constants involved in 'softening' of acoustic 
waves. The neutron scattering results available are well described. In addition, from 
strain-mediated dipole-dipole interactions, low-temperature structures can be anti- 
cipated. The system turns out to be describable by a very anisotropic three-state Potts 
model on two sublattices. We stress that we are not dealing with the first-order phase 
transition of CsCuC13 characterised by a tripling of the unit cell along the c axis. It is 
however suggested that no other dipole interactions are necessary to explain the 
observed dynamic and quasi-elastic phenomena. 

cscuc1,. 

2. The energy of the elastic dipoles in terms of acoustic phonons 

With regard to their influence on the environment, the distorted octahedra can be 
replaced by elastic dipoles at their centres in one of six crystallographically possible 
orientations, as one can visualise with the help of figure 4. We divide them into two 
sublattices, one consisting of the lower type octahedra (distortive types r = 1,2 ,3)  and 
the other of the upper type ( r  + 3 = 4,5 ,6) .  
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Figure 4. Double octahedron of the unit cell. The distorted octahedron is supposed to 
have the same principal axes as the mean undistorted octahedron (Schotte 1987). The 
numbers refer to tetragonal elongations, for example distortion 1 means that the axis from 
point 1 upwards is stretched, 

Their pseudo-spin character or orientation is described by the variable c'(R) = 1 or 
0, depending on whether distortive type r is present in site R or not. Usually one prefers 
the concentration fluctuation 

c'(R) - (c'(R)) = c'(R) - c' (1) 

which is also the order parameter with the properties 

c. [c'(R) - c']  = 0 
r 

(c'(R) - c r )  = 0 T >  T, ( 2 )  

(c'(R) - c') # 0 T s  T,. 

We have c' = c'+~ = c = 4 for the concentration. 

system can be written as (Khatchaturian 1965) 
In second order in the displacements and the pseudo-spins the elastic energy of the 

+ C, C, G'(R - R')u(R)  [c'(R) - C] 
RR' r 

( 3 )  

where s,r = 1, . . . , 6 .  Here J" is a still unspecified direct interaction and D the tensor of 
the elastic moduli (double indices are summed over). 

The linear coupling between the displacements and concentration fluctuations which 
contains the elastic dipoles will now be discussed more thoroughly. 
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It is well known (Khatchaturian 1966) that in the presence of an elastic dipole 
described by the tensor P in Ro, the elastic energy density is given by 

V ( R )  = P , , & , W  - Ro) + hk,lmEr,Elm 

E,, = i[au,(R)/ax, + au,(R)/ax,] 

(4) 

( 5 )  

where the deformations E,] are defined as 

and 8(R - R,)  describes the range of the dipole (in a small volume V ) .  Actually it is 
usual for Huang scattering to idealise: 

e(R - ~ , ) / v +  a ( ~  -R ,J  as R + Ro and V+ 0. (6) 
AIllm are the elastic constants, which we will use in Voigt notation later on. 

Comparing ( 3 )  and (4) one sees that together with ( 5 )  

G(R - R')u(R) = P,  - + 8(R - R') /2 .  c:; 3 (7) 

Obviously it is convenient to transform ( 3 )  to q-space, using (6) and expanding in 
(acoustic) normal modes 

(q is in the first Brillouin zone, ej(q) are the polarisation vectors) and using the eigenvalue 
equation for the lattice dynamical matrix: 

(9) E D  (R - R ' ) ~ P (  1e iq .R '  = mu?( >e'( eiq.R 
U P  1 4  1 4  1 4 )  

R' 

(m is the mass of the mean lattice). 

orientations, so that (3) becomes 
One further generalises to many dipoles, in R,, and the 2 X 3 types of distortive 

The linear interaction which can now be thought of as a spin-phonon interaction has the 
form 

hr = i (Prq  - e,) (11) 

where-here we take over earlier results (Schotte 1987)-the P' are given by 

and U is something like an effective dipole volume times the JT elongation of the 
octahedron axis (discussed again in 0 5 ) .  
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In the case of a Q 3  elongation of the Cu-Cl octahedron 

0 v'2 -v '3  -v2 

v 3  -v'2 1 0 -v'2 

P 3  = & (  2 1 --v':) P 4 = (  0 -1 I) (13) 

-V2 -V6 -v'2 0 

-1 -v'3 -1 v3 V2 

v'2 -d6 v'2 v6 0 

These tensors were derived by rotating the Q3-type tensors for tetragonal stretching: 

into the six equivalent positions in the hexagonal ABC13 crystal (figure 4). 

scattering intensity always involves the P' tensors in the combination 
We can restrict the treatment to Q3-type octahedral stretching since the neutron 

c . P ' @ P '  or 2 P ' @  P'+3 
r r 

which is insensitive to using Q2 or * Q3 or combinations thereof. Note that 
3 6 

P' = 2 P' = 0 (14) 
1 4 

and for later use that for the averaged tensor products one has 
6 

h c .  p r  @ p r  = A  @ A  + B @  B + C @ C +  D @ D  (15) 
r 

and 
6 

Q 2 P' @ P' = u 2 C i 6  ( A  @ A + B @ B )  + u 2 c i 4  (c 8 c + D 8 0)  (16) 
r 

where 
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Equations (14) to (17) help when explicitly calculating XrIPrq * ej12 which will enter into 
the 'softened' frequency w,,(q). 

One can study the system from two sides: the pseudo-spins will be coupled via the 
strain field, and one can investigate the nature of these interactions and favourable low- 
T structures. The phonons will suffer damping and softening in the presence of the 
flipping spins, accessible experimentally to inelastic neutron scattering. The pseudo- 
spins are not directly 'visible' to the neutrons but from the inelastic scattering results a 
'bare' and an 'effective' (in the elastic medium) flip rate will emerge; thus the neutron 
data from the high-T phase also yield information on the pseudo-spin interactions. 

Through its T dependence the flip rate also contains information about the warping 
term of the Jahn-Teller cluster in the bulk system. In this respect the neutron inves- 
tigations of the high-T (paradistortive) phase offer a unique possibility of approaching 
microscopic JTparameters in the bulk system, in contrast to th,: usually investigated non- 
JT systems with JT impurities (Reinen et a1 1979). 

In the next section the spin-spin interactions are discussed to get some ideas about 
possible ordered structures caused by phonon interactions alone; in § 4 the phonon 
correlation functions (Q,Q,), which enter into the neutron scattering cross sections, will 
be calculated. 

3. Phonon-induced interaction between elastic dipoles 

The effective pseudo-spin interaction is obtained by putting, in (lo), 

aE/aQ,(-q) = 0 

and solving for Q,(q): 

Q,(d = (b'mw:) i(P'q * e,>c'(q> 

and inserting in (10) to obtain an effective pseudo-spin energy 

The phonon-mediated part of the effective interaction can be written as, with (9), 

Vrr'(q) = (P'q D-l(q) * P"q).  (21) 

From (20), Vrr'(R) > 0 means ferrodistortive and Vrr'(R) < 0 antiferrodistortive inter- 
actions. 

Fourier-transforming back to real space one has 

Vrr ' (R  - R ' )  = [P'V, - V,,P"D-l(R - R ' ) ]  ( 2 2 )  

with 
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/ i \  / I \  

0 CI at 3 c i 4  
@ CI at c i 4  

Cu at  0 and c i 2  

Figure 5.  Hexagonal plane with Cu and C1 positions indicated. To fit the model of figure 
4(a) into the real lattice, the double octahedron is shifted by c/4 upwards along z. 

D-'(R - R I )  = N-'/* 

vrr8 ( R  - R ' )  - I R  - R ' I  - 3 .  

exp[-iq - ( R  - R ' ) ] Z I L ) ( ~ ) .  (23) 
4 

Since D-' - q-* the modulus of q drops out of (21), which means that in R-space 

(24) 
Obviously there is a strong angular or directional dependence in q- as well as in R-space. 

These well-known features of dipole systems lead, for example, to the lattice sum 

V q o )  = c, v q R  - R ' )  
R#R' 

being badly convergent or rather depending on the sample shape. This has interesting 
consequences, especially for predominantly ferrotype interactions: the energy is lowered 
by domain formation with optimal shapes depending on crystal symmetry. For solid 
solutions this is extensively discussed by de Fontaine (1979) and (in a spirit more related 
to ours) for compounds-the alkali cyanides-by de Raedt et a1 (1981). For our purpose 
we note that the dipolar forces have two outstanding properties, their long range and 
their directional dependence. While the former seems favourable for molecular-field 
theory to work, the latter makes the force effectively short-range, grosso modo because 
cancellations occur as in (25).  This can be expressed by an effective number of nearest 
neighbours which can be surprisingly small (Friedman and Felsteiner 1974). Therefore 
speculations about low- T structures from cluster energies are allowed but molecular- 
field results will be less reliable. 

The main obstacle for the discussion of Vrr'(R - R ' )  is D-'(R - R ' ) ;  although in 
principle known for hexagonal systems, it is very tedious to work with. Also we would 
need the elastic constants at high temperatures T 9 T,. Important information, 
especially about the sign of the interactions in high-symmetry directions, can also be 
won by treating the system as isotropic. Then, with one dipole in R' = 0, the other at 
distance r in R ,  one uses (Landau and Lifshitz 1965 vol VII) 

D i f ( R ,  0) = [1/16np(l - 0)][4(1 - o ) d k l / r  + RkRi/r3]  (26) 
with p = (cll - cI2)/2 the shear modulus and (T = c12/(cll + cl2) the Poisson number with 
0 < (T < 0.5 (for our systems (T is close to 0.3). 
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b 

z = 0 plane 

Figure 6. Taking the right lower corner of figure 5 as centre, the directions towards nearest 
(a, b ,  a') and next-nearest ( t l ,  t 2  andx) neighbours are shown. Also the relative orientation 
of the basic triangles of distorted octahedra can be deduced. 

We use for short 

(27) D;'(R) = a a k l / r  + b R k R I / r 3  with 2 < a/b < 4. 

Note that 

a 
D-'(R - R ' ) .  - D-'(R - R ' )  = - - a 

aRI, aRm 

For the dipole tensors the forms p, equations (13), can be used since in an isotropic 
medium p = cb6 = q4, so that instead of (12) 

P' = upupr. (29) 
The interactions 

v r r ' ( R )  = -PkkPG; d2D, ' (R) /aR,  dRm 

(30) 
- - -pr pr'gkl 

mk nl nm - 

have now to be calculated for directions from the coordinate origin (where octahedron 
type r resides) along which one finds nearest and next nearest neighbours, the latter 
because, for three-state pseudo-spins with antiferro coupling, one has two options for 
the type of nearest neighbour and the next nearest may enable a decision between them. 

The interactions (30) contain various information: about the symmetry, about the 
elastic medium influence and of course about the sign. Before going into these let us 
again make the nomenclature clear. In figure 4 the coordinate system used for the two 
basic octahedra is shown; the explicit form of the P'depends on it. In figure 5 it is shown 
how the objects of figure 4 are situated in the hexagonal plane of the lattice. When we 
investigate interactions along c, figure 2 can be consulted. Distortions 1 ,2 ,3  refer to the 
lower octahedron; if from point 1 the axis upwards is stretched, the elastic dipole is 
described by P' ;  if from point 4 in the upper octahedron the upgoing axis is stretched, 
we deal with P4. 

We proceed to calculate nearest- and next-nearest-neighbour interactions in a basic 
hexagon. Six R directions have to be considered, which are however not independent of 
each other (see figure 6). 
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1 3 1  

* .  

i ' i  2 i 3 1 3  
m e .  

i C !  Id 1 

Figure 7. Energetically favourable (a ) ,  (c), (d )  and unfavourable (b )  neighbourhoods 
resulting from direction-dependent dipole-dipole interactions in the hexagonal plane 
(broken lines to next-nearest neighbours). 

From Va' for R = (0, y, 0)llb one can deduce the interaction matrix for R = 
( f i x ,  ? x ,  0) along a and a' by renumbering the distortions in figure 4(b). Also 
Vrr'(x, 0,O) has to be calculated, then the values for R along t l  and t2, parallel to the two 
other next-nearest directions, can be deduced. 

Alongx and y the few derivatives D:; that occur are rather trivial to calculate. Here 
is the result for Va' = Vrr'(O, y, 0): 

VLl vll = (3a - 12b1/~3 < o (31) 
vi2 = v33 b v22 = (u,u)* (51b/4 - 3a/2)/y3 > 0 (32) 
Vi2 E Vi3 = -V1'/2 = (UP)' (6b - 3a/2)/y3 > 0. (33) 

From this and symmetry considerations for Vr '  and V:' , the following interaction 
matrices result (rows are labelled r = 1 , 2 , 3  and columns r' = 1,2,3):  

v" -v1'/2 - vy2 

+"/2 v " / 2  - v22 v22 

- v y 2  v"/2 - v22 

v'1 - v'1/2 

One sees that in the hexagonal plane it happens that the sign of the interaction depends on 
the direction of the vector joining the two elastic dipoles. Therefore antiferrodistortively 
ordered rows of in themselves ferro-ordered distortions can occur with anisotropy in the 
plane, as shown in examples in figure 7 .  
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A closer look at the size of the interaction involved shows that pure ferrodistortive 
order can be preferred, depending on the elastic constants. The energies of the triangles 
(figures 8(a) and(b)) are, respectively, 

w(24.25b - 4 . 5 ~ )  (35a) vp + vp + vg = v22 - 7 / 1 1  = 

VL1 + VA1 + Vi? = 2VZ2 + Vll = 13bw (35b) 
with w = ( p ~ ) ~ / y ' .  Considering 2 < a/b < 4, one sees that both arrangements are poss- 
ible and at a/b = 2.5 the energies are equal. 

For next-nearest neighbours in the hexagonal plane one finds comparable cir- 
cumstances: along R, = (x, 0,O) with x = d / 3 u  

which means antiferrodistortive, but 

is always positive. 

Vi1 = [ ( u , u ) ~ / I x ~ ~ ] ( ~ ~  - 5 ~ )  < 0 

V Z ~  = v:3 = [ ( U p ) 2 / i x 1 3  1 ( 9 b + 

vf:" = v22 = v" < 0 

v;; = v22 t l  = v22 > 0 

v;; = v33 = 1 /22  

(36) 

(37) 

Interaction matrices similar to (34) can now be constructed with 

f 2  

(38) 

f 2  

and the mixed elements VY' according to (34). It is not surprising that from next-nearest 
interactions the configurations (a) ,  (c), ( d )  of figure 7 are equivalent, CV, = 2(VZ2 - 
V:') > 0 ,  while for ( b )  CV, = 0 ,  which is less favourable. 

All that has been said for V"', r ,  r f  = 1 ,2 ,3  holds for V"', r ,  r f  = 4,5,6; one just puts 
r+  r + 3. 

Along the c direction, R = (0, 0, z ) ,  the most important one is the nearest-neighbour 
inter-lattice interaction, because the distance is only c/2 while the other factors are of 
comparable magnitude. 

Along c one has a simple three-states Potts model because the interaction matrices, 
also for the next-nearest neighbours, have the form [ v -v/2 

VE"(Vy1'+3) = -v/2 v (39) 
-v/2 -v/2 

(where as before rows are labelled r = 1 , 2 , 3  for V:' and 4 ,5 ,6  for V:'+3 and columns 
are labelled r' = 1,2 ,3) .  The result for 'joining stretched axes' is 

which corresponds to the 'axis avoiding correlation' and to the observation that stretched 
axes never meet at the same anion in the low-T structures. 

C (40) [(,U42/lz131(4a - 166) < 0 vi4 = v25 = v36 = 
c 

2 2  A A  1 1  

In1 j bl 

Figure 8. Smallest cluster for ferrodistortive row-wise ordering like in figure 7 and for 
purely ferrodistortive ordering. 
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2 (1) 2 
Figure 9. Intermediate phase of RbCuC13 (with 'impurities') as proposed by Tanaka et a1 
(1986a), consistent with the deduced dipolar interactions. 

For the next-nearest neighbours along c one has (at z = c) 

c (41) VE1 = v22 = v 3 3  = [(u,u)2/~2~3] 12b > 0. 

This means we have a three-states Potts model with antiparallel coupling between 
nearest neighbours and parallel ordering tendencies for distortions of the same type at 
next-nearest-neighbour sites. 

This makes plausible a structure which has been suggested for P-RbCuC13 consisting 
of 3535.. . and 2626.. . chains arranged in agreement with figure 7, shown in figure 9. 
According to the somewhat ambiguous structural information, Tanaka et a1 suggest 
additional disorder (indicated in figure 9 by numbers in parentheses) such that a few 
distortions 1 or 4 occur randomly, averaging to an overall Q,  instead of Q3 ordering in 
the planes (for details see Tanaka et a1 1986a). 

For P-RbCrC13 a structure with partly ordered c-chains is suggested, for example 
4(:)4(!) such that ordered planes alternate with Ising-type disordered planes. It has 
been shown (Samukhin 1982) that in a cubic system a three-state Potts model with 
antiferro-type interactions along c and a ferro-type interaction in the basal plane (just 
one!) has such a structure as a possible ground state. A parallel can be drawn if one has 
isotropic tendencies (figure 8(b))  in the plane. 

It could be that Vg" is of comparable size for the third-neighbour interactions VT' 
with (one of them) R = (0 ,  y, cy/2a) at distance r = \'(a2 + c2/4) = 7.8 A (a = 7.2 A; 
c = 6.1 A). By studying the non-zero 'odd' derivatives, like 0;; and the explicit shapes 
of Pr@ Pr'+3 one can easily find the general form for V2(r = 1 , 2 , 3 ;  s = 4,5,6) :  

-vi412 - a -vi472 + a i -vi414 v14 - a v14/2 - B + a v14/4 + p 
va = -v14/2 + a vi414 + Vl"4 - p - a . (42) 

Note that Vy # Vi6 so that the symmetry of V r  , equation (39), gets lowered. 
Since there are 12 third-nearest neighbours or six different directions to be con- 

sidered, the situation becomes quite involved. The isotropic model no longer seems 
good enough if several options arise depending on the size of the elastic constants. 

In conclusion these simple calculations show that the pseudo-spin interactions oscil- 
late in sign and decay with distance similar to Rudermann-Kittel interactions, along c ,  
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while in the hexagonal plane they oscillate or just decay. From this it is easy to anticipate 
as favourable low- Tstructures those of the /3-phase of the Rb compounds where doubling 
or tripling of the lattice cell along c is not yet involved. The latter implies balancing the 
tendency of next-nearest neighbours to order ferrodistortively against that to undergo 
bulk distortions (monoclinic angle); obviously the ferrotype interaction works against 
an even distribution of the six orientations of the basic elastic dipole. CsCuC13 in its low- 
T phase shows the only possible realisation of the ‘axis avoiding correlation’ and zero 
monoclinic angle because each elastic dipole appears just once in the unit cell, in the c- 
chains 16243516.. . or 34261534.. . . 

4. The phonon correlation function and inelastic neutron scattering cross section 

Since we aim at a quantitative description of the neutron results, it will be helpful to list 
the essentials about acoustic phonons in the hexagonal system which enter into the 
discussion of the softening of certain elastic constants. One can always choose the 
coordinate system such that q is in the x*z*-plane and q2 is along z* I/c*. For the sound 
velocities and polarisation vectors, one has to find the eigenvalues and eigenvectors of 

with 

D z z  = C 3 3 d  + c 4 4 d  D z x  = (c13  + c 4 4 ) q x q z .  

The eigenvalue equation 

has the solution 
det(D - pw2)  = 0 

pw?I3 = ( D ~ ~  + ~ , , ) / 2  [(oXx - D ~ ~ ) ~  + 4 ~ W ~ / 2  
P 4  = D y y  

and the eigenvectors in 

have the shape 
De, = po:e, 

el  = (-W, 0 ,  

e2 = (0,1,0) 

e3 = (W, 0 ,  b(q) )  

44 = (D22 - P ” 2 2  + (D22 - PO31 1 
b(q) = -Dxz/[D22 + ( 4 2  - P W W 2 .  

P d  = c 4 4 d  el = ( O , O ,  1) TA 

with a2(q) + b2(q) = 1 so that they are orthonormalised. One can choose 
2 2 112 

We list the interesting limits q = (qx, 0,O): 

Po; = c 6 6 q ?  e2 = (0,1,0) TA 

P 4  = C l d  e3 = (1,0,0) LA 

(44) 

(45) 

(46) 
(47) 

(49) 
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and q = (0, 0, qz): 
e2 = (0,1,0) two degenerate TA 

Pw:/3 = c44q: 
e3 = ( 1 , 0 , 0 )  

PO: = C 3 3 d  el  = ( O , O ,  1) LA. (52) 
When we use the elastic matrix as above a factor p / m  will appear in 

where m-l = 0.2mct + 0.2m& + 0.6mc:. We use p / m  = 3.62/(77.4 x 
We apply and extend the method of Yamada et a1 (1974) who calculate the correlation 

function as the time-correlated thermodynamic fluctuation of the elastic deformations 
(the latter expressed by phonon amplitudes), the Fourier transform of which enters in 
the inelastic neutron scattering cross section. This is a classical method valid for high 
temperatures, and the ingredients of it are also found in Landau and Lifshitz (1965, vol 
V). We therefore only sketch the method. Consider the state vector 

~ m - ~ .  

X = ( ~ 1 , ~ 2 , ~ 3 , Q i , Q 2 , Q , , c ' ( q ) , ~ ~ ( q ) , . .  ,c6(q)) (54) 

made up of the variables of the energy (10) and the conjugate momenta p,.  What we 
need is 

%,(4 = (x,(t + z)x,(z>) ( 5 5 )  

where x,, x, are components of X .  The thermodynamic fluctuation cp,(O) = (x&) is given 
by a Gaussian average 

qJ l (0 )  = [P' /2/(2n)2/3]  J . . . 1 x , x I  exp(-PlmxIxm) dxl  . . . dx, (56) 

with P = det(PJ,) and with the free energy ( E  - T S )  in the exponent. It can be proved 
that 

( x J x ] )  = P i "  (57) 

The rank of the matrix Bl, to be inverted is the number of components of X .  
In order to obtain the coefficients Plm in the exponent of (56 ) ,  we extend the 

expression for the energy ( 7 )  by the kinetic energy and the entropy. In order to determine 
the entropy to second order in c'(q), we remember that c'(q) is the Fourier transform of 
the order parameter c'(R) - c' = Ac'(R); see ( 1 )  and (2) .  

Expanding, we obtain 

-TS = k T x  c'(R) In c'(R) = k T x  ~ [ A C ' ( R ) ] ~  + const + . . , (58)  
r , R  r , R  

and neglecting the third-order term which has to appear for a three-state spin and is 
usually responsible for the first-order transition, one obtains 

F =  E - T s  kTPimxixm = 4 C p , ( q ) p , ( - q )  + 4 C U;Q,(q)Q,(-q) 

hr(q)Q,(q)c'(-q) + 42 (1" + 6kT)cr(q)c'(-q) 

4J 4.1 

+ 
Ql' qr 
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+ J r r + 3 ~ r ( q ) ~ r + 3 ( - q )  
qr 

(59) 

with hi = i ( P r q  * from which one can read off the elements p, of the matrix p. 
In order to calculate (55) one needs the time dependence of x,(z);  one assumes 

i , ( z )  = - 2 A l k . x k ( z ) .  (60) 
k 

For the p ,  and Q, canonical equations of motions hold (therefore we have replaced 
V'k Q by Q when going from (10) to (59)), while 

?(q) = -y[X hi(-q)Q,(-q)  + (6kT + Jrr)cr(-q)  + J r r + 3 ~ r + 3  (-411 (61) 

is taken with a constant relaxation rate y. We will come back to the meaning of y .  
Then one can calculate (see Landau and Lifshitz 1965, vol V) 

Although the matrices p, A and PA are easy to write down, from (59), (60) and (61) it is 
quite tedious to calculate (Q,Q,), since for the full problem one has to invert a 12 X 12 
matrix. 

The problem is solved in steps. For one phonon mode wo coupled to one sublattice 
of pseudo-spins one easily extends the results of Yamada et a1 (1974): 

(QQ) ,  = y ( k T / n )  ( h / y j ) 2 / [ ( w 2  - U ;  + h2 / j )*  + u 2 ( w 2  - ~t)~/(yj)~] (63) 

where 

j = 6 k T + J  h2  = x l P r q . e o / 2 / m .  
r 

Equation (63) has the popular 'three-pole' structure, that is, as a function of w it shows 
humps at w 2  = w," = oi(1 - h 2 / j w i )  or io2 = cog and o = 0; which ones are most 
pronounced depends also on q in pw i  = cq2, or more precisely on the ratio ~i/(yj)~ (c 
is the relevant elastic modulus). 

For the two-sublattices problem, which comes in through the last term in (59), we 
assume a simple three-state Potts model, i.e. one without the directional dependences 
of Vrr' discussed in the last section but one with interactions like in (39), which should 
be acceptable for the nearest-neighbour inter-lattice interaction Jrr+3. Then the elastic 
limit of the phonon correlation function is easy to find: 

kT  (T2 + V') /h'/' - Q V x  hr(q)hr'3(-q) 
2 (64) 

7 2  /hrI2 - V x  h'hri3),/(7' - V 2 ) ]  

where? = Jrr + 6kT and V = Jrr+3 (independent of r ) .  
Obviously, the 'axes avoiding correlation' contained in hrhr+3 occurs only when Jrr+3 

is 'switched on'. We will show below that (QQ),=, is closely related to quasi-elastic 
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‘dense Huang scattering’ where a contribution proportional to 2P’ 8 Pr+3 appeared 
when short-range correlations along c were explicitly inserted (Schotte 1987). In the 
spirit of the last section, V should be more important than J“ since nearest neighbours 
for the inter-lattice interaction are at distance c/2 compared to a or c for J”. Owing to 
the symmetry of 2 P‘ 8 Pr+3 different from 2 P‘ 8 P‘, there should be an observable 
influence on the shape of Huang iso-intensity contours. (No superstructure precursor 
diffuse peaks are expected from nearest-neighbour interactions alone.) Since no such 
influence could be observed, it is reasonable to ignore Vand especially J“, as not relevant 
for the present situation immediately above T,  of CsCuCl,, and to believe that the 
indirect elastic dipole interactions via the strain field dominate. Terauchi et a1 (1972) 
come to similar conclusions when discussing diffuse scattering in the high-temperature 
phase of NiCr204. 

Consequently, in the high-T phase the neutrons cannot distinguish between a one- 
site-per-cell model with a six-component spin and a two-site-per-cell model with a three- 
component spin on each site. (In Schotte (1987) there is an error in equation (18): 
6,,c(l - e )  has to be replaced by c(fiJr - e) .  The consequence is a factor Q in front of the 
Huang scattering expression for both models.) 

The calculation of (Q,Q,), for three acoustic phonons w : ,  m i ,  U:, which in the main 
symmetry directions are proportional to q4, c66, c33 and cI1 (see equations (51) and (52) ) ,  
starts from 

(65) E - TS = $(w:Q: + w i Q :  +pT + p i )  + h l Q I S  + h2Q2S + $ k T S 2  
that is two phonons and one spin. 

for Q,: 
The result already extended to three phonons and six spin components is, for example 

Note that one has still mainly a ‘three-pole structure’, i.e. maxima of (QIQ,) ,  at w = 
wl, w = coS1 and w = 0, but also zeros at w = w 2  and U = w3,  which leads to non- 
Lorentzian shapes when say w2 is close to w1 (or d e d 4  = for q = (qx, 0, 0), and in 
addition there are further peaks discussed below and in figures 10 and 11. 

Including the mixed correlations, the general result can be expressed as 

This goes into the neutron scattering cross section 

d2a /dwdq = l i l 2  (l /m)(K. e l ) ( K .  e,)(QIQ,),  (69) 
11 

where the greater part of the dynamical structure factor including the Debye-Waller 
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factor, scattering power and cell contents is lumped into 6. For K ,  one takes as a good 
approximation the Bragg indices; actually the scattering vector Q = K + q is meant. The 
final result for the neutron experiment is 

with 

For w = 0 

If quasi-elastic scattering is interpreted as integrating over a well developed narrow 
Lorentzian peak near U) = 0 (in (70) put all w = 0 except that in 0 2 / ( y n 2 ) :  

with 

T o -  p ( P ' q .  D-lP'q) 
T 6m kT (73) 

which is-apart from the temperature dependence-the expected Huang result. Actu- 
ally, depending on the width of the central component compared to the experimental 
resolution, (71) as well as (72) might have been seen. 

From (72) the width of the central line goes to zero as T+ To, i.e. 

and the maximum intensity at w = 0, from (71), behaves as T/ (T  - To)2, while the 
integrated quasi-elastic intensity from (72) is proportional to T/( T - To).  

Note that To refers to a second-order displacive phase transition at a temperature (as 
we will find below, about 40K) lower than the actually observed first-order phase 
transition at T,. 

5. Discussion and comparison with experiment 

In order to give a visual impression, the analytic behaviour of the correlation function 
(QIQl),, determining the neutron scattering cross sections, has been plotted in figures 
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Figure 10. Phonon correlation function (66) for q = (qx,  0,O) (a)  for small q = qx such 
that softened modes appear, (b )  for larger q ,  where at q = 0 175 the phonon peak is well 
separated from the central line For smaller q the cqq mode merges with the central mode 
and ‘ca ghosts’ appear, not (yet) resolved in neutron scattering. 

lO(a) and (b )  for q = (qx,  0,O) and wl(q,) in the interesting range from w,(q,) < 6ykT 
to w,(qx) b 6 ykT; softening and overdamping of w1(q,) are readily visible, and at the 
same time peaked structures, caused by the other modes, may appear. The influence of 

- cll is not really discernible since cI1 (‘6~44) is so much larger than even its softened 
version w3s gives relatively too little intensity; so figure 10 mostly reflects the behaviour 
of CO: - cu and U $  - c66. The narrow peaks below q, = 0.07 have not been resolved 
experimentally. Figure 11 shows what is to be expected (and is found) as intensity from 
the inelastic scattering experiments near K = (0, 0 , 2 )  and q = (q,, 0,O) (details in Graf 
et aZ1989)’ taking into account the experimental resolution. For figures 10 and 11, the 
parameters resultingfrom fitting the experimental data have been used. The experiments 
could not be extended to the small q of figure lO(a). The CsCuC13 crystals are very 
sensitive to heating and cooling across T,: they apparently develop micro-cracks, and 
Bragg tails and powder lines appear excluding the small-q range from reliable obser- 
vation. Further experiments are planned on a new crystal heated just once to T > T,. 

The theory contains the five elastic constants, the dipole strength and ykT, the 
inverse average time a spin stays in one state. For the elastic constants the room- 
temperature values from Soboleva et a1 (1976) can be used as starting values, except 
for c33 and c44 for which from Liithi’s (1977) data high-temperature values can be 
extrapolated. The dipole strength, that is the factor VC4,Ad/d or Vc6,Ad/dV2 in (12), 
can be estimated by relatingit to the Jahn-Teller energy. The parameter ykTis unknown, 
and if enough data are available (elastic and inelastic) to give a reasonable set of elastic 
constants and dipole strength, ykT can be considered ‘measured’ by this experiment. 
The observed overdamping has already shown that neutron scattering has the right 
intrinsic timescale for the ‘spin-flip rate’ and can cover the range from ‘almost static’ to 
‘dynamic’ Jahn-Teller effect. 

For an estimate of the softened modes or elastic constants expected in ultrasound 
experiments the quantities hf /T,  from (67), are important. With (16) and (51) and q = 
(q,, 0,O) one finds 

h:(q,)/T = A c 4 4 d  
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W 
Figure 11. Inelastic neutron scattering intensity with q = (qx,  0,O) near K = (0,0,  2): 
theory (80) folded with the instrumental resolution (3 meV) (details in Graf et a1 1989). 

where A = pu2/mkT, U = VAd/d .  With wf  from (52)' qx in reciprocal-lattice units with 
2n/a* = 47c/aq3 = 1.003 k', and for q = (0, 0, qz) ,  qz in units of 2n/c*  = 1.01 A-': 

h%q,)/T = h%qz)/T = AC444 CO: = w: = q 4 q ? / p  (76) 

The reason why w1 is not softened can be traced to the model for the direction of the 
stretched octahedra in space (figure 4(a)) ,  which keeps the trigonal symmetry around 
the z axis: as the JT distortions change direction, 'nothing happens' along c,  that is all 
Pi,  = 0. In fact Luthi's (1977) measurements of c33 (longitudinal mode along c) shows 
no softening above T, but a rise of c33 at T, of about 10%. 

Since the elastic constants and the other parameters as theoretically expected and 
found experimentally are discussed in the accompanying paper by Graf er a1 (1989)' we 
only note the results for the softening elastic constants to be expected (but not observable 
by neutrons in the accessible q-range). The 'bare' values ( T  B T,) were found to be 

w: - c44 = 4.23 x 10" erg cm-3 

w ;  - c66 = 8.2 x 10'O erg cm-3 (78) 

w: - cl1 = 29 x 10'' erg cm-3 

and A = 0.093 x lo-'' cm3 erg-'. These values go into the calculation of the softened 
modes (peaks of (66) at wi < ykT): 

wg1 = (q:/p)O.76 x lolo 

wgz = (q: /p)  6.4 x 10" (79) 

wg3 = (qz/p) 26.8 x 10". 

all in cgs units. Obviously, c44 becomes anomalously small, as had been noticed by 
Luthi in ultrasound velocity measurements. 

One can also calculate the fictitious second-order transition temperature (73): To = 
382 K for q = (qx ,  0,O) while T, = 423 K. 
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Figure 12. Theoretical predictions for ‘dense Huang 
scattering’ near K = (2,0,1) corrected with the sus- 
ceptibility ~ ( q ,  7’ = 428 K). Iso-intensity lines from 
(71) at w = 0 are plotted using the elastic constants 
from the inelastic data fits. 

At  428 K the linewidth of the central peak is 

rcentre = 6ykT(1- To/T) = 0.86(1- 373/428) = 0.1 meV. (80) 

The experimental result for 428 K is 6ykT = 0.86 meV. rcentle is about 50% of the 
resolution. 

The central line would yield a quasi-elastic picture of the Jahn-Teller distortions, 
were it not for the shoulders from the broadened phonons. Therefore quasi-elastic 
scattering will pick up phonon contributions, broadening the ‘waists’ of the Huang 
patterns (figures 12 and 13). Theoretical predictions of the Huang pictures have to be 
calculated by integration of the dynamical scattering cross section folded with the 
resolution around w = 0. 

The interpretation of 6ykT = r( T) involves the energy surface of the Jahn-Teller 
distorted states, the ‘Mexican hat’ with its three minima with the ‘warping energy’ /3 
impeding transitions between them. We expect an Arrhenius law 

T ( T )  = 6yokTe-2P/kT (81) 

to hold. From three measured values for r( T )  from inelastic data (Graf et a1 1989) 2/3 = 
450 K gives a good fit. This is somewhat lower than the usually given free cluster values 
of 200 cm-l for /3, but this tendency is expected in the compound (Deeth and Hitchman 
1986). 

Figure 13. ‘Dense Huang scattering’ as in figure 12, 
corrected for phonon contributions in the wings of 
the central line, based on integrating (70) folded 
with the resolution. 
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Figure 14. Static ‘dense Huang scattering’, (82), as 
in earlier work (Schotte 1987) but with the new 
elastic constants, near K = (2,0,1) 

Finally we discuss our new understanding of ‘dense Huang scattering’ as it rep- 
resents itself in the small-o limit of the dynamical description. Earlier we had derived 
the static expression (Schotte 1987) 

dg /dQ = b2QC.1Q*D-1Prq12 .  (82) 
r 

It is now corrected in two ways. 
A major modification is due to the T- and q-dependent susceptibility x(q )  read off 

from (72). T,(q) from (73) and therefore x(q)  do not depend on the modulus of q but 
on its direction. Therefore the typical Huang behaviour of the intensity as q-2 is not 
changed. 

Qualitatively the shape of the iso-intensity lines becomes slimmer and more 
symmetric (figures 12 and 15). This shape is then widened in the middle by the phonon 
and resolution effects mentioned (figure 13). This is much closer to the experimental 
findings (see Graf et a1 1989) than the naive Huang picture of (82) in figure 14. 

The fact that the transition temperature depends on the q direction points to 
competing order parameters, which necessitates a further mechanism to trigger the 
first-order transition at T, > To. As discussed by Graf et a1 (1989), (72) taken literally 
leads to an iso-intensity contour near (2,0,1) with lobes more extended along x*  than 
observed. Perhaps one sees a true precursor of the first-order transition. 

6. Summary and conclusions 

We have described the high-temperature phase of the ABC13 (A = Cs, Rb; B = 
Cu, Cr) compounds as a lattice of elastic dipoles corresponding to the JT stretched 
octahedra of the C1- cage around Cu or Cr, and calculated the consequences for 
inelastic and quasi-elastic neutron scattering, assuming no other dynamics than a flip 
rate for the corresponding pseudo-spins. 

This description was initiated by the observation that interesting phenomena for 
q +. 0 (ultrasound, Huang scattering) had been found for CsCuC13. This was followed 
by inelastic neutron scattering experiments described in a separate paper (Graf et a1 
1989). 

As a result, a set of elastic constants and predictions of their softening behaviour 
towards a second-order phase transition some 50 K below the observed first-order 
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Figure 15. Diffuse scattering iso-contours in the x*z*  scattering plane to be expected in 
the high-temperature phase close to T, for CsCuCI3 calculated as for figure 12. 

transition have been found. Also a spin-flip rate was deduced which is supposed to be 
related to the warping energy of the JT complex overcome by the thermal activation; 
this is the only place where optical phonons come into play. 

The model also allows the calculation of the pseudo-spin interactions. We found 
repulsive interactions between distortive states along c which prevent the long octa- 
hedron axes from meeting at the same anion. In the hexagonal plane, the sign of the 
interaction depends on the direction of the vector connecting the partners. Thus rows 
of ferrodistortively ordered distortions of one type alternating with such rows of a 
different distortive type can be favourable but, depending on elastic constants, purely 
ferrodistortive arrangements are also possible. Thus the intermediate structures of the 
Rb compounds (where the cell is not yet enlarged along c) are immediately plausible 
together with the predicted softening of the c+, shear mode (monoclinic angle of 
RbCrC13) and the c66 shear mode (orthorhombic distortion of RbCuC13). Some of 
these structural characteristics have already been discussed by Crama (1980) and 
Crama and Maaskant (1983). We could add predictions about the sign and relative 
size of the interactions within the elastic dipole model. There is still room to try out 
theoretical predictions of the anisotropic Potts model; there seem, however, to be 
none available for the hexagonal system and three interaction parameters (two in the 
plane and one along c). 

We have excluded from consideration the mechanism for the first-order phase 
transition for which experimentally no precursor effect could be observed. 

In the future more detailed knowledge of the behaviour of c33 is sought. When we 
know better what happens along c,  we will try to find connections to recent con- 
siderations about the first-order transition of CsCuC13 by Maaskant and Haije (1986). 
Since we seem to have found a way to determine experimentally the warping term, it 
will be interesting to extend it to other compounds with a different JT ion (Cr2+) and/ 
or different elastic environment (Rb+). 
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